

Welcome to TwinPy’s documentation!

TwinPy is a package containing tools to easily create your own Python GUIs for TwinCAT based on Simulink models.

The GUIs are based on PyQt5 and the TwinCAT interface is done through pyads.

Contents:

	Home

	Installation

	Using TwinPy with a remote target
	Access to the XML file
	Sharing the XML files directly

	Remote ADS connection
	Adding routes on Windows

	Adding routes on Linux

	TwinPy Remote

	Modules
	TwinCAT and Simulink Interfacing
	TwinCAT Connection

	Simulink

	ADS Variables

	GUI
	TwinCAT UI Elements

	Base GUI

	Base Widgets

	Tabs

	Main - Example

	Module Info

Indices and tables

	Index

	Module Index

	Search Page

Installation

The modules are best installed using pip. This is explained in the ReadMe of the repository [https://bitbucket.org/ctw-bw/twinpy/src].

Using TwinPy with a remote target

You can also use TwinPy (and other pyads applications) remotely. In this scenario a client PC runs the GUI, interacting with a running TwinCAT instance on a target PC.

Using TwinPy remotely involves two steps:

	Getting access to the compiled Simulink model’s XML file for the model structure

	Making a remote ADS connection

Tip

Often in a target and client situation, the client is also the development PC (which compiles the TwinCAT solution for the target).
When this is the case, giving access to the XML files for TwinPy is trivial since they already exist on the client computer.

Access to the XML file

When the client is not the computer that compiles the Simulink model, it won’t automatically have access to the most
recent model XML. There are a few approaches:

	
	Compile the model also on the client PC
	
	This will require all the compile dependencies on the client PC, and each compilation has to be done twice.

	
	Copy the XML from the compiled model to the client PC
	
	No extra compilation is needed, but copying the XML each time can be time consuming.

	
	Set up a file share to give direct access to the compiled XMLs
	
	By sharing the XMLs directly a client has access to the model structure without extra steps

Sharing the XML files directly

On the development PC (could be the same as the target PC), create a network share for the TwinCAT modules directory.
By default this is C:\TwinCAT\3.1\CustomConfig\Modules.
Simply right-click on the Modules directory in Windows explorer and click ‘Give access to…’. Complete the wizard
by adding the client PC. Read-only permissions should be all that’s needed.

On the client PC you should now be able to find the PC and view the modules. Note the absolute path, which might be
something like \\<ip>\Modules.

Search for info on Windows file sharing in case you run into problems.

Remote ADS connection

See the pyads documentation on routing for more information: https://pyads.readthedocs.io/en/latest/documentation/routing.html

Adding routes on Windows

Use the TwinCAT UI and add the remote. Right-click on the TwinCAT icon in the taskbar and click ‘Router…’ > ‘Edit Routes’.

This gif exemplifies the procedure:

[image: _images/add_route_to_target.gif]

The route must not be set to ‘unidirectional’, which seems to be the default.

Note that you might need to add allow-rules in the firewall for both inbound and outbound traffic on TCP ports
48898 and 8016, and UPD port 48899.

Adding routes on Linux

The pyads.connection.Connection [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.connection.Connection] will create a route from the client to the target. You can then use
pyads.ads.add_route_to_plc() [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.ads.add_route_to_plc] to create a route back to the client. Or you can use the TwinCAT UI on the remote target
to create the route back.

TwinPy Remote

In your application script, set the IP address, AMS net id and port correctly for the remote target when
instantiating TwincatConnection.

In case no local XML file is available, specify an absolute path to the XML file when creating a SimulinkModel.

Modules

TwinCAT and Simulink Interfacing

TwinCAT Connection

	
class twinpy.twincat.connection.TwincatConnection(ams_net_id: str = '127.0.0.1.1.1', ams_net_port: int = 350, ip_address: Optional[str] = None)

	Bases: pyads.connection.Connection [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.connection.Connection]

Extend default Connection object (typically named plc).

ADS connection with custom features.

Note that this version will connect on object creation, throwing an exception
when it fails. pyads.Connection waits for .open() and will fail quietly.

	Parameters

	
	ams_net_id – TwinCAT AMS address (default is localhost)

	ams_net_port – ADS Port (default is 350)

	ip_address – Target IP (automatically deduced from AMS address)

	Raises

	pyads.ADSError – When connection failed

	
get_module_info(module_name: str) → dict

	Get information about live module.

	
get_parameter(name: Optional[str] = None, index_group: Optional[int] = None, index_offset: Optional[int] = None, symbol_type: Optional[Union[str, Type]] = None) → twinpy.twincat.symbols.Parameter

	Get Parameter instance.

See Parameter.

	
get_signal(name: Optional[str] = None, index_group: Optional[int] = None, index_offset: Optional[int] = None, symbol_type: Optional[Union[str, Type]] = None) → twinpy.twincat.symbols.Signal

	Get Signal instance.

See Signal.

	
read_list_of_symbols(symbols: List[pyads.symbol.AdsSymbol [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.symbol.AdsSymbol]], ads_sub_commands: int = 500) → Dict[pyads.symbol.AdsSymbol [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.symbol.AdsSymbol], Any]

	Read a list of symbols in a single request.

Same principe as read_list_by_name. See read_list_by_name() for
more info.

This version doesn’t work for structs.

The _value property for each symbol will be updated. A dictionary will also
be returned of the symbol names and their new values.

	
write_list_of_symbols(symbols_and_values: Dict[pyads.symbol.AdsSymbol [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.symbol.AdsSymbol], Any], ads_sub_commands: int = 500) → Dict[pyads.symbol.AdsSymbol [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.symbol.AdsSymbol], str]

	Write new values to a list of symbols.

Same principe as write_list_by_name. See write_list_by_name() for
more info.

For example:

Using dict
new_data = {symbol1: 3.14, symbol2: False}
plc.write_list_of_symbols(new_data)

	Parameters

	
	symbols_and_values – Symbols to write to

	ads_sub_commands – Max. number of symbols per call (see
write_list_by_name)

Simulink

Model to wrap around a Simulink model.

An object for a Simulink model is created first before a
TwinCAT connection is made. We cannot get the original
model structure from TwinCAT alone.

	
twinpy.twincat.simulink.sanitize_name(name: str) → str

	Reduce a string to characters which are allowed in a Python variable name.

This is needed because Simulink blocks can contain more characters than
this. Python variables can only contain a-z, A-Z, 0-9 and ‘_’.
Additionally, a variable cannot start with a digit, nor can it start with
an underscore to prevent conflicts with semi-private properties.

SimulinkModel

	
class twinpy.twincat.SimulinkModel(object_id: int, object_name: str, type_name: Optional[str] = None)

	Bases: twinpy.twincat.simulink.SimulinkBlock

Wrapper for a compiled Simulink model in TwinCAT.

The model is built using the XML file, created when the model is compiled.
Therefore the model can be loaded without TwinCAT running.

This model object is actually an extension of a SimulinkBlock. The complete
model is basically just the root block.

By default the TWINCAT3DIR environment variable is used to locate the TwinCAT
installation and look for the installed compiled XML files.

To work around this, you can pass either of the following to type_name:

	A single name (TWINCAT3DIR will be used)

	A path to a directory (default XML file name will be
searched)

	A path to the XML file, typically named like *_ModuleInfo.xml (no
searching will be done)

	Parameters

	
	object_id – ID of the TcCOM object in TwinCAt (the symbol group
index)

	object_name – Object Name (as shown in TwinCAT)

	type_name – Type name (as shown in TwinCAT) (defaults
to be the same as object_name).

	
connect_to_twincat(connection: twinpy.twincat.connection.TwincatConnection)

	Connect model the one running in TwinCAT.

This will link all the symbols in the model to actual ADS symbols. And
the remote model is compared to the local .xml file through
the model checksum.

	Parameters

	connection – Connection object to connect through

	
get_index_group() → int

	Return the group index (owned by model).

	
static get_module_info(xmltree: xml.etree.ElementTree.Element) → dict

	Get dictionary of module info fields.

The DefaultValues section is a list of names and values, this method
creates a regular dict from it.

	
get_plc() → Optional[twinpy.twincat.connection.TwincatConnection]

	Return Connection (owned by model).

	
static get_xml_data(type_name: str) → xml.etree.ElementTree.Element

	Find and parse model XML file.

The block diagram is returned.

SimulinkBlock

	
class twinpy.twincat.SimulinkBlock(xmltree: xml.etree.ElementTree.Element, model: twinpy.twincat.simulink.SimulinkModel)

	Bases: object

A single Simulink Block (anything, e.g. constant, gain, a sub-system)

A SimulinkBlock can contain children, which are also SimulinkBlock objects.
Using __getattr__ those subblocks (and their symbols) can be addressed
directly:

model = …
Subblocks can be addressed smoothly:
print(model.MySubsystem.MyConstant.Value)

Blocks contain parameters (Value) in the example above. When only a
single parameter or signal is present, you can directly call it from the
block itself:

print(model.MySubsystem.MyConstant.get()) # Short
print(model.MySubsystem.MyConstant.Value.get()) # Same but longer

print(model.MySubsystem.MySineWave.Phase.get()) # Multiple parameters
print(model.MySubsystem.MySineWave.Amplitude.get())

Create this block based on an XML tree

Sub-blocks are created too based on the remaining tree structure. This
means the creation of blocks works recursively.

	Parameters

	
	xmltree – A branch of a model XML tree (or the entire tree)

	model – A reference back to the original model (the root of the
structure)

	
get()

	Get value of the first symbol.

	
get_index_group() → int

	Return the group index (owned by model).

	
get_plc() → Optional[twinpy.twincat.connection.TwincatConnection]

	Return Connection (owned by model).

	
get_symbols_recursive() → List[twinpy.twincat.symbols.Symbol]

	Recursively navigate subblocks and collect all parameters and signals.

	
make_parameters(xmltree: xml.etree.ElementTree.Element) → dict

	Find and create Parameters in the current block.

	
make_signals(xmltree: xml.etree.ElementTree.Element) → dict

	Find and create Signals in the current block.

	
make_subblocks(xmltree: xml.etree.ElementTree.Element) → Dict[str, twinpy.twincat.simulink.SimulinkBlock]

	Build sub-blocks (this makes the SimulinkBlocks recursive).

	
print_structure(max_depth: Optional[int] = 3, depth: int = 0)

	Recursively print the child signals and parameters of this block.

Use this to test your model from the command line.

	Parameters

	
	max_depth – Max recursion depth (set to None for infinite)

	depth – Current depth (do not use this argument, it’s used internally)

	
set(val)

	Set value of the first symbol.

ADS Variables

Module with classes that wrap around TwinCAT symbols.

With ‘symbol’ we mean ADS variable.

Symbol

	
class twinpy.twincat.Symbol(block: Optional[SimulinkBlock] = None, plc: pyads.Connection = None, name: Optional[str] = None, index_group: Optional[int] = None, index_offset: Optional[int] = None, symbol_type: Optional[Union[str, Type]] = None)

	Bases: pyads.symbol.AdsSymbol [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.symbol.AdsSymbol], abc.ABC

Base (abstract) class for a TwinCAT symbol.

Extends pyads.AdsSymbol - Introduced in pyads 3.3.1

A symbol (or a Symbol sub-class) is typically owned by a block in a
Simulink model.
Each symbol contains a reference back to the block that owns it, which can
be used to trace back to the model that owns that block.
The symbol needs a reference to the connection object directly.

Symbols can be created from a block or manually (either based on name or
by providing all information).

	Variables

	value – The buffered value, not necessarily the latest value. The buffer
is updated on each read, write and notification callback. It can be
useful when the value needs to be applied multiple times, to avoid
storing the value in your own variable.

See pyads.Symbol. If a block was passed, index_group and plc
are automatically extracted from it and do not need to passed too.

Additional arguments:

	Parameters

	block – Block that owns this symbol (default: None)

	Raises

	ValueError –

	
add_device_notification(callback: Callable[[Any], None], attr: Optional[pyads.structs.NotificationAttrib [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.structs.NotificationAttrib]] = None, user_handle: Optional[int] = None) → Optional[Tuple[int, int]]

	Add on-change callback to symbol.

Superclass method is used, this version adds a wrapper for the
callback to set the variable type. The user-defined callback will be
called with the new symbol value as an argument.

	
del_device_notification(handles: Tuple[int, int])

	Remove a single device notification by handles.

	
get()

	Get the symbol value from TwinCAT.

Simply an alias for read().

	
get_value_from_string(text: str) → Any

	Parse a string to the right data type.

	
read() → Any

	Read the current value of this symbol.

The new read value is also saved in the buffer.
Overridden from AdsSymbol, to work without an open Connection.

	
set(val)

	Write the symbol in TwinCAT.

Simply an alias for write().

	
set_connection(connection: Optional[pyads.connection.Connection [https://pyads.readthedocs.io/en/latest/pyads.html#pyads.connection.Connection]])

	Update the connection reference.

	
write(new_value: Optional[Any] = None) → None

	Write a new value or the buffered value to the symbol.

When a new value was written, the buffer is updated.
Overridden from AdsSymbol, to work without an open Connection

	:param new_value Value to be written to symbol (if None,
	the buffered value is send instead)

Parameter

	
class twinpy.twincat.Parameter(block: Optional[SimulinkBlock] = None, plc: pyads.Connection = None, name: Optional[str] = None, index_group: Optional[int] = None, index_offset: Optional[int] = None, symbol_type: Optional[Union[str, Type]] = None)

	Bases: twinpy.twincat.symbols.Symbol

A TwinCAT parameter.

A constant setting, e.g. a gain block value, constant block value. For read/write
access.
Needs no changes, can use the default.

See Symbol.

See pyads.Symbol. If a block was passed, index_group and plc
are automatically extracted from it and do not need to passed too.

Additional arguments:

	Parameters

	block – Block that owns this symbol (default: None)

	Raises

	ValueError –

Signal

	
class twinpy.twincat.Signal(block: Optional[SimulinkBlock] = None, plc: pyads.Connection = None, name: Optional[str] = None, index_group: Optional[int] = None, index_offset: Optional[int] = None, symbol_type: Optional[Union[str, Type]] = None)

	Bases: twinpy.twincat.symbols.Symbol

A TwinCAT signal.

Typically a port, e.g. a subsystem input or output

See pyads.Symbol. If a block was passed, index_group and plc
are automatically extracted from it and do not need to passed too.

Additional arguments:

	Parameters

	block – Block that owns this symbol (default: None)

	Raises

	ValueError –

	
set(val)

	Write the symbol in TwinCAT.

Simply an alias for write().

GUI

TwinCAT UI Elements

TcWidget

TcLabel

TcLineEdit

TcPushButton

TcRadioButton

TcRadioButtonGroupBox

TcCheckBox

TcSlider

TcGraph

Base GUI

Base Widgets

TcErrorsLabel

DrivesWidget

SystemBackpackWidget

SystemWRBSWidget

ErrorsWidget

Tabs

ConsoleTab

FirmwareTab

Main - Example

Module Info

TwinPy package.

	author

	Robert Roos <robert.soor@gmail.com>

	license

	MIT, see license file or https://opensource.org/licenses/MIT

	created on

	2021-01-08 16:13:00

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 twinpy	

 	
 	
 twinpy.twincat.connection	

 	
 	
 twinpy.twincat.simulink	

 	
 	
 twinpy.twincat.symbols	

Index

 A
 | C
 | D
 | G
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_device_notification() (twinpy.twincat.Symbol method)

C

 	
 	connect_to_twincat() (twinpy.twincat.SimulinkModel method)

D

 	
 	del_device_notification() (twinpy.twincat.Symbol method)

G

 	
 	get() (twinpy.twincat.SimulinkBlock method)

 	(twinpy.twincat.Symbol method)

 	get_index_group() (twinpy.twincat.SimulinkBlock method)

 	(twinpy.twincat.SimulinkModel method)

 	get_module_info() (twinpy.twincat.connection.TwincatConnection method)

 	(twinpy.twincat.SimulinkModel static method)

 	
 	get_parameter() (twinpy.twincat.connection.TwincatConnection method)

 	get_plc() (twinpy.twincat.SimulinkBlock method)

 	(twinpy.twincat.SimulinkModel method)

 	get_signal() (twinpy.twincat.connection.TwincatConnection method)

 	get_symbols_recursive() (twinpy.twincat.SimulinkBlock method)

 	get_value_from_string() (twinpy.twincat.Symbol method)

 	get_xml_data() (twinpy.twincat.SimulinkModel static method)

M

 	
 	make_parameters() (twinpy.twincat.SimulinkBlock method)

 	make_signals() (twinpy.twincat.SimulinkBlock method)

 	make_subblocks() (twinpy.twincat.SimulinkBlock method)

 	
 module

 	twinpy

 	twinpy.twincat.connection

 	twinpy.twincat.simulink

 	twinpy.twincat.symbols

P

 	
 	Parameter (class in twinpy.twincat)

 	
 	print_structure() (twinpy.twincat.SimulinkBlock method)

R

 	
 	read() (twinpy.twincat.Symbol method)

 	
 	read_list_of_symbols() (twinpy.twincat.connection.TwincatConnection method)

S

 	
 	sanitize_name() (in module twinpy.twincat.simulink)

 	set() (twinpy.twincat.Signal method)

 	(twinpy.twincat.SimulinkBlock method)

 	(twinpy.twincat.Symbol method)

 	
 	set_connection() (twinpy.twincat.Symbol method)

 	Signal (class in twinpy.twincat)

 	SimulinkBlock (class in twinpy.twincat)

 	SimulinkModel (class in twinpy.twincat)

 	Symbol (class in twinpy.twincat)

T

 	
 	TwincatConnection (class in twinpy.twincat.connection)

 	
 twinpy

 	module

 	
 twinpy.twincat.connection

 	module

 	
 	
 twinpy.twincat.simulink

 	module

 	
 twinpy.twincat.symbols

 	module

W

 	
 	write() (twinpy.twincat.Symbol method)

 	
 	write_list_of_symbols() (twinpy.twincat.connection.TwincatConnection method)

 nav.xhtml

 Table of Contents

 		
 Welcome to TwinPy’s documentation!

 		
 Installation

 		
 Using TwinPy with a remote target

 		
 Access to the XML file

 		
 Sharing the XML files directly

 		
 Remote ADS connection

 		
 Adding routes on Windows

 		
 Adding routes on Linux

 		
 TwinPy Remote

 		
 Modules

 		
 TwinCAT and Simulink Interfacing

 		
 TwinCAT Connection

 		
 Simulink

 		
 ADS Variables

 		
 GUI

 		
 TwinCAT UI Elements

 		
 Base GUI

 		
 Base Widgets

 		
 Tabs

 		
 Main - Example

 		
 Module Info

_static/minus.png

_static/plus.png

_images/add_route_to_target.gif
Test Mode
Windows 10 Enterprise
Build 18362.10h1 _release.190318-1202

_static/file.png

